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Abstract Interfaces are often believed to play a role in

the mechanical behavior of mineralized biological and

biomimetic materials. This motivates the micromechanical

description of the elasticity and brittle failure of interfaces

between crystals in a (dense) polycrystal, which serves as

the skeleton of a porous material defined one observation

scale above. Equilibrium and compatibility conditions,

together with a suitable matrix-inclusion problem with a

compliant interface, yield the homogenized elastic prop-

erties of the polycrystal, and of the porous material with

polycrystalline solid phase. Incompressibility of single

crystals guarantees finite shear stiffness of the polycrystal,

even for vanishing interface stiffness, while increasing the

latter generally leads to an increase of polycrystal shear

stiffness. Corresponding elastic energy expressions give

access to effective stresses representing the stress hetero-

geneities in the microstructures, which induce brittle fail-

ure. Thereby, Coulomb-type brittle failure of the crystalline

interfaces implies Drucker–Prager-type (brittle, elastic

limit-type) failure properties at the scale of the polycrystal.

At the even higher scale of the porous material, high

interfacial rigidities or low interfacial friction angles may

result in closed elastic domains, indicating material failure

even under hydrostatic pressure. This micromechanics

model can satisfactorily reproduce the experimental

strength data of different (brittle) hydroxyapatite bioma-

terials, across largely variable porosities. Thereby, the

brittle failure criteria can be well approximated by micro-

mechanically derived criteria referring to ductile solid

matrices, both criteria being even identical if the solid

matrix is incompressible.

Introduction

Interfaces are believed to often play a fundamental role in

the mechanical behavior of hierarchically organized bio-

logical materials. Accordingly, much attention has been

paid to the polymer-filled interfaces between ceramic tab-

lets in nacre [2, 20, 32, 33, 39, 40, 41], but the importance

of interfacial behavior was also discussed for other classes

of biological materials, such as bone [48].

To gain insight into these material systems, material/

microstructure models have been developed within differ-

ent theoretical frameworks, such as fracture mechanics and

scaling laws [20, 39, 40, 41], large-scale elastoplastic

Finite Element analyses [32, 33, 48], or periodic homog-

enization on the basis of a unit cell discretized by Finite

Elements [2].
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In addition to such periodic, FE-based (‘computational’)

homogenization approaches, analytical and/or semianalyt-

ical approaches of random homogenization (continuum

micromechanics [51, 52]) have been recently used as to

effectively predict the elastic properties of complicated

hierarchically structured material systems (such as bone

[19, 22, 24, 25], wood [29, 30], concrete [5, 23, 49], or

shale [50]), from the elasticity and the mechanical inter-

actions—over different observation scales—of nanoscaled

elementary components. Thereby, not every single detail of

the highly random microstructures, but only the essential

morphological features are considered, in terms of homo-

geneous subdomains (material phases) inside representa-

tive volume elements (RVEs, Fig. 1), their volume

fractions, their elasticity, and their mechanical interaction.

Theoretically, it has been recently well understood how to

extend these homogenization techniques to the ductile

failure of (bulk) phases [3, 4, 6, 10, 12, 15] (while appli-

cations to real materials [37] are more rare than for the

elastic case). In comparison, the treatment of brittle failure

and of interfaces in the framework of random homogeni-

zation is still a very open field: It is the focus of this

paper—both fundamentally, and in view of the failure of

biomimetic hydroxyapatite biomaterials.

Extending very recent results [14, 44], where inclusion

coatings and interfaces in porous polycrystals were mod-

eled, we here tackle the description of the elasticity and

failure of interfaces between crystals in a (dense) poly-

crystal, which serves as the skeleton of a porous material

defined one observation scale above (Fig. 2). Thereby, we

show characteristic features of a corresponding new

micromechanics model, which is based on matrix-inclusion

problems with compliant interfaces [21, 27, 53], and which

turns out to reasonably explain the behavior of porous

hydroxyapatite biomaterials, especially for their brittle

failure in the compressive regime.

Fundamentals of continuum

micromechanics—representative volume element

In continuum micromechanics [28, 47, 51, 52], a material

is understood as a macro-homogeneous, but micro-

heterogeneous body filling a representative volume ele-

ment (RVE) with characteristic length ‘; ‘� d; d standing

for the characteristic length of inhomogeneities within the

RVE (see Fig. 1), and ‘� L;L standing for the charac-

teristic lengths of geometry or loading of a structure built

up by the material defined on the RVE (see Table 1 for a

list of all symbols in this paper). In general, the micro-

structure within one RVE is so complicated that it

cannot be described in complete detail. Therefore, quasi-

homogeneous subdomains with known physical quantities

(such as volume fractions or elastic properties) are rea-

sonably chosen. They typically include 3D subdomains,

and may also include the 2D interfaces between the 3D

subdomains. They are called material phases; bulk and

interface phases, respectively. The ‘homogenized’

mechanical behavior of the overall material, i.e., the rela-

tion between homogeneous deformations acting on the

boundary of the RVE and resulting (average) stresses, or

the ultimate stresses sustainable by the RVE, can then be

estimated from the mechanical behavior of the aforemen-

tioned homogeneous phases (representing the inhomoge-

neities within the RVE), their dosages within the RVE,

their characteristic shapes, and their interactions. If a single

phase exhibits a heterogeneous microstructure itself, its

mechanical behavior can be estimated by introduction of an

RVE within this phase, with dimensions ‘2� d; comprising

again smaller phases with characteristic length d2 � ‘2;

and so on, leading to a multistep homogenization scheme

(see Fig. 1).

Fig. 1 Multistep homogenization: properties of phases (with charac-

teristic lengths of d and d2, respectively) inside RVEs with

characteristic lengths of ‘ or ‘2, respectively, are determined from

homogenization over smaller RVEs with characteristic lengths of

‘2� d and ‘3� d2, respectively

(a) (b)

Fig. 2 (a) Polycrystal with interfaces (schematic representation of

volume Vi of crystal i and interface I ij between crystals i and j),
serving as skeleton in a porous material at larger observation scale (b)
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Table 1 List of symbols

AC Surface area of spherical crystal with radius a

Aex Constant in solution of matrix-inclusion problem with

compliant interface

Ai Surface area of crystal i

Ain Constant in solution of matrix-inclusion problem with

compliant interface

a Characteristic crystal radius

Bex Constant in solution of matrix-inclusion problem with

compliant interface

Bin Constant in solution of matrix-inclusion problem with

compliant interface

Cex Constant in solution of matrix-inclusion problem with

compliant interface

CC Fourth-order stiffness tensor of single crystals within the

RVE Vpoly

Cpoly Fourth-order homogenized stiffness tensor of polycrystal

with compliant interfaces

CPORO Fourth-order homogenized stiffness tensor of a porous

material the solid phase of which is a polycrystal with

weak interfaces

d Characteristic length of inhomogeneities within the RVE

Epoly Second-order ‘macroscopic’ strain tensor (related to RVE

Vpoly of polycrystal with compliant interfaces)

E0 Uniform strain imposed at infinity of matrix surrounding

inclusion with compliant interface

Epoly,v ‘Macroscopic’ volumetric strain (related to RVE Vpoly of

polycrystal with compliant interfaces)

Epoly,d ‘Macroscopic’ equivalent deviatoric strain (related to RVE

Vpoly of polycrystal with compliant interfaces)

er Radial unit vector

e1; e2; e3 Unit base vectors of Cartesian base frame

fi Volume fraction of crystal i within the RVE Vpoly

h Cohesion of interfaces between single crystals

I Fourth-order identity tensor

I Entity of interfaces within polycrystalline RVE Vpoly

I ij Interface between crystals i and j

J Volumetric part of fourth-order identity tensor I

K Deviatoric part of fourth-order identity tensor I

K Second-order interface stiffness tensor

K0 ¼ 2K Second-order interface stiffness tensor in matrix-inclusion

problem with compliant interface

Kn Normal interface stiffness (component of K)

Kt Tangential interface stiffness (component of K)

kC Bulk modulus of single crystals

kpoly Homogenized bulk modulus of polycrystal with compliant

interfaces (RVE Vpoly)

kPORO Homogenized bulk modulus of a porous material the solid

phase of which is a polycrystal with compliant interfaces

‘ Characteristic length of the RVE

L Characteristic lengths of geometry or loading of a structure

built up by the material defined on the RVE

n Normal vector onto surface of a single crystal

RVE Representative volume element

Table 1 continued

r Radial coordinate in spherical coordinate system

S Fourth-order Eshelby tensor for spherical inclusions

T Traction force vector acting on surface element of

interface

Tn Normal component of T

Tt Tangential component of T

Tcr
t Critical (maximum) tangential traction bearable by

intercrystalline interface

t Tangential vector to surface of a single crystal

tr Trace of a second-order tensor

VC Volume of spherical crystal with radius a

¶VC Surface of spherical crystal with radius a

Vi Volume of crystal i

¶Vi Surface of crystal i

Vpoly Volume of an RVE of polycrystal with compliant

interfaces

VPORO Volume of an RVE of porous material the solid phase of

which is a polycrystal with compliant interfaces

VS Volume of solid phase within the RVE VPORO

x Position vector within an RVE, either Vpoly or VPORO

a Friction angle of interfaces between single crystals

dij Kronecker delta (components of second-order identity

tensor 1)

dI Dirac distribution supported on I
e Second-order strain tensor field within single crystals

filling RVE Vpoly of polycrystal with compliant

interfaces

h Latitudinal coordinate of spherical coordinate system

j ¼ K 0t a=lC Dimensionless quantity related to rigidity of interface

lC Shear modulus of single crystals

lpoly Homogenized shear modulus of polycrystal with

compliant interfaces (RVE Vpoly)

lPORO Homogenized shear modulus of a porous material the

solid phase of which is a polycrystal with compliant

interfaces

mpoly Homogenized Poisson’s ratio of polycrystal with

compliant interfaces (RVE Vpoly)

n Displacements within and at the boundary of RVE Vpoly

½½n�� Displacement discontinuity at the interfaces between

crystals

½½nn�� Normal component of ½½n��
½½nt�� Tangential component of ½½n��
½n� Displacement discontinuity at compliant interface of

‘generalized’ matrix-inclusion problem

n
i
; n

j
Displacements along interface I ij, in crystal i and j,

respectively

�n Mean displacement at the interface I ij

n
in

Displacement field inside the inclusion surrounded by

compliant interface and infinite matrix (related to

‘generalized’ matrix-inclusion problem)

n
ex

Displacement field throughout the matrix surrounding

inclusion coated by compliant interface (related to

‘generalized’ matrix-inclusion problem)
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Micromechanics of polycrystal with weak interfaces

Micromechanical representation

We consider an RVE with volume Vpoly (Figs. 2a, 9a)

hosting single crystals of typically quasi-spherical shape

and of volume Vi, separated from each other by very thin

(essentially 2D) interfaces I ij between crystals i and j, all

interfaces making up the entity of interfaces I ;[I ij ¼ I ;
see Fig. 2. ‘Macroscopic’ strains Epoly are imposed at the

boundary of the RVE Vpoly in terms of displacements n;

on oVpoly : nðxÞ ¼ Epoly � x ð1Þ

with x as the position vector within the RVE. The

geometrical compatibility of (1) with the local

‘microscopic’ strains eðxÞ in the crystals and the

displacement discontinuities ½½n�� ¼ n
j
� n

i
at the

interfaces I ij between the crystals i and j implies [14]

Epoly ¼
1

Vpoly

Z
Vpoly

eðxÞdV þ
X

ij

Z
I ij

½½n�� �
s

ndS

 !

¼ 1

Vpoly

X
i

Z
oVi

�n�
s

ndS ¼
X

i

fi
Vi

Z
oVi

�n�
s

ndS ð2Þ

with location vector x; normal n onto the spherical surface

of the crystals,

�n ¼ ðn
i
þ n

j
Þ=2 ¼ n

j
� ½½n��=2 ¼ n

i
þ ½½n��=2 ð3Þ

as the mean displacement at the interface I ij;Vi and

fi ¼ Vi=Vpoly as the volume and the volume fraction of the

ith crystal, and ¶Vi as its surface with area Ai. For crystals

of the same shape and size (with volume VC and surface

¶VC), and indiscernible average mean displacements at

their surfaces, (2) can be transformed to

Epoly ¼
1

VC

Z
oVC

�n�
s

ndS ð4Þ

The corresponding ‘macroscopic’ stresses Rpoly are equal

to the spatial average of the (equilibrated) local stresses

rðxÞ inside the RVE Vpoly,

Rpoly ¼ hrðxÞi ¼
1

Vpoly

Z
Vpoly

rðxÞdV

¼
X

i

fi

Vi

Z
Vi

rðxÞdV

¼
X

i

fi

Vi

Z
oVi

x� ½rðxÞ � nðxÞ�dS ð5Þ

For spherical crystals with radius a, surface ¶VC with

area AC ¼ 4pa2, and volume VC ¼ 4=3pa3, (5) can be

further transformed,

Rpoly ¼
X

i

fi
4
3
pa3

Z
oVC

aerðxÞ � ½rðxÞ � erðxÞ�dS

¼
X

i

3fi
AC

Z
oVC

erðxÞ � ½rðxÞ � erðxÞ�dS

¼ 1

VC

Z
oVC

anðxÞ � ½rðxÞ � nðxÞ�dS

¼ 3

AC

Z
oVC

nðxÞ � ½rðxÞ � nðxÞ�dS

¼ 1

VC

Z
VC

rðxÞdV ð6Þ

with radial unit vector er being identical to the normal n.

Since the microscopic stresses are equilibrated (div r ¼ 0),

(5) and (6) imply [9, p. 118, 28], that the ‘macroscopic’

stresses act as traction forces Rpoly � n both at the boundary

of the RVE, oVpoly; and those of single crystals, oVC;

Table 1 continued

Rpoly Second-order ‘macroscopic’ stress tensor (related to RVE

Vpoly of polycrystal with weak interfaces)

Rpoly;m ‘Macroscopic’ mean stress (related to RVE Vpoly of

polycrystal with weak interfaces)

Rpoly;d ‘Macroscopic’ equivalent deviatoric stress (related to

RVE Vpoly of polycrystal with weak interfaces)

RPORO Second-order macroscopic stress tensor (related to RVE

VPORO of porous material the solid phase of which is a

polycrystal with weak interfaces)

RPORO;m Macroscopic mean stress (related to RVE VPORO of

porous material the solid phase of which is a

polycrystal with weak interfaces)

RPORO;d Macroscopic equivalent deviatoric stress (related to RVE

VPORO of porous material the solid phase of which is a

polycrystal with weak interfaces)

r Second-order stress tensor field with in single crystals

filling RVE Vpoly of polycrystal with compliant

interfaces

rin Stress field inside the inclusion surrounded by compliant

interface and infinite matrix (related to ‘generalized’

matrix-inclusion problem)

rex Stress field throughout the matrix surrounding inclusion

coated by compliant interface (related to ‘generalized’

matrix-inclusion problem)

r Scattering factor in two-membered evolution strategy

/ Longitudinal coordinate of spherical coordinate system

u Volume fraction of pores within the RVE VPORO

v ¼ lC=kC Dimensionless quantity related to compressibility of

single crystals

W Macroscopic energy density

1 Second-order identity tensor

� First-order tensor contraction

: Second-order tensor contraction

� Dyadic product of tensors
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on oVpoly and oVC : rðxÞ � nðxÞ ¼ Rpoly � nðxÞ ð7Þ

The relation between Rpoly and Epoly depends on the

constitutive behavior of the single crystals and of the

interfaces between them.

Constitutive behavior of interfaces and single crystals

The interfaces are the weakest locations of the material, the

load bearing capacities of which are bounded according to

a Coulomb-type law,

8x 2 I ij : TtðxÞ� Tcr
t ¼ aðh� TnðxÞÞ ð8Þ

with friction angle a, cohesion h, and Tt and Tn as the

tangential and normal components of the traction force

T ¼ Tnnþ Ttt acting on an infinitesimal interface area

around x, with normal n, and t as the tangential unit vector,

t � n ¼ 0: We consider brittle interface failure once a crit-

ical value Tt ¼ Tcr
t is reached in (8).

Below this critical value, the interface behaves linear

elastically, i.e., the interface traction TðxÞ is related to a

displacement discontinuity ½½n��ðxÞ encountered when

crossing the interface I ij along nðxÞ:

TðxÞ ¼ K � ½½n��ðxÞ
with

K ¼ Knn� nþ Ktð1� n� nÞ; Kn !1
ð9Þ

K is the second-order interface stiffness tensor with infinite

normal component Kn (no mutual interpenetration of

crystals), and positive tangential component Kt (allowing

for relative tangential movements of crystal surfaces). Also

the bulk crystal phase inside the RVE Vpoly behaves linear

elastically,

8x 2 Vi : rðxÞ ¼ CC : eðxÞ ð10Þ

with CC ¼ 3kCJþ 2lCK as the isotropic elastic stiffness

of the bulk material phase comprising all single crystals;

with bulk modulus kC and shear modulus lC. J ¼ 1=31� 1

and K ¼ I� J are the volumetric and the deviatoric part of

the fourth-order identity tensor I; with components

Iijkl ¼ 1=2ðdikdjl þ dildkjÞ; the components of the second-

order unit tensor 1, dij (Kronecker delta), read as dij = 1 for

i = j and dij = 0 for i 6¼ j:

The assumption of crystal isotropy deserves to be

commented, since single crystals are generally anisotropic,

including approximately transversely isotropic hydroxay-

apatite [34]. However, hydroxyapatite anisotropy is not

very pronounced [34], and in addition, the disorder

of crystals (and of their principal material directions)

probably renders isotropic phase proporties as suitable

approximation for the purpose of polycrystal property

homogenization. This was recently shown quantitatively

for polycrystals consisting of perfectly disordered needles,

being either isotropic or anisotropic [18].

Homogenized elasticity of polycrystal with compliant

interfaces

As long as the interfaces behave elastically, the relation

between Rpoly and Epoly reads as

Rpoly ¼ Cpoly : Epoly ð11Þ

with the ‘macroscopic’ homogenized stiffness tensor of the

polycrystal, Cpoly ¼ 3kpolyJþ 2lpolyK, with bulk modulus

kpoly and shear modulus lpoly; depending on the local

elastic properties CC and Kt.

Following [14], the establishment of this dependence is

based on the behavior of a composite solid consisting of a

spherical inclusion of radius a and a compliant interface

coating the inclusion, being itself embedded in an infinite

matrix exhibiting the elastic properties Cpoly of the

homogenized polycrystal, and being subjected to uniform

strains E0 at infinity (Fig. 3).

Mathematically, we have

r\a : r ¼ CC : e

r ¼ a : T ¼ K0 � ½n�
with ½n� ¼ ½½n��=2;K0 ¼ 2K

r > a : r ¼ Cpoly : e

r !1 : n! E0 � x

ð12Þ

For determination of kpoly, a purely spherical deforma-

tion, E0 ¼ E01 is imposed at r !1. Spherical symmetry

of both the loading and the geometry of the considered

solid implies vanishing tangential displacement disconti-

nuities at the inclusion interface, ½½nt�� � 0. Since Kn !1,

also ½½nn�� ¼ 0 (no mutual interpenetration of crystals), and

the matrix-inclusion problem with compliant interfaces

Fig. 3 Matrix-inclusion problem with compliant interface (‘general-

ized Eshelby problem’): a spherical inclusion with interface is

embedded in an infinite matrix subjected to uniform strain E0 at

infinity. The elastic properties of the matrix are those of the

homogenized material

8828 J Mater Sci (2007) 42:8824–8837

123



reduces to the classical Eshelby-type inclusion problem

with a perfect, rigid interface [17]. Then, consideration of

only one bulk phase (the crystals) implies that the overall

bulk modulus kpoly is identical to the crystal bulk modulus

kC,

kpoly � kC ð13Þ

For determination of lpoly, a purely deviatoric defor-

mation, E0 ¼ E0ðe1 � e1 � e3 � e3Þ, is imposed (see Fig. 3

for the Cartesian base frame e1; e2; e3). The mathematical

form of the displacement field in the exterior region, r > a

(the homogenized material), n
ex

, is established in the line

of [27], and reads in spherical coordinates (see Fig. 3 for

Eulerian angles / and h) as

nex;r

E0

¼ðAexrþ3
Bex

r4
þ5�4mpoly

1�2mpoly

Cex

r2
Þðcos2 /sin2 h� cos2 hÞ

nex;h

E0

¼1

2
ðAexr�2

Bex

r4
þ2

Cex

r2
Þsin2hð1þ cos2 /Þ

nex;/

E0

¼�1

2
ðAexr�2

Bex

r4
þ2

Cex

r2
Þsinhsin2/

ð14Þ

where mpoly is the Poisson’s ratio of the polycrystal with

weak interfaces,

mpoly ¼
3kpoly � 2lpoly

6kpoly þ 2lpoly

ð15Þ

The boundary condition in (12)4 directly implies Aex = 1,

while the constants Bex and Cex will follow from interface

conditions.

Inside the inclusion (r < a, the solid crystal phase), the

displacement field n
in

reads as

nin;r

E0

¼ðAinrþBinr3Þðcos2/sin2h�cos2hÞ

nin;h

E0

¼1

2
ðAinrþð11lCþ15kCÞBinr3

3ð3kC�2lCÞ
Þsin2hð1þcos2/Þ

nin;/

E0

¼�1

2
ðAinrþð11lCþ15kCÞBinr3

3ð3kC�2lCÞ
Þsinhsin2/

ð16Þ

The four remaining constants Bex;Cex;Ain and Bin are

determined by enforcing equilibrium of forces at the

interface r = a:

T ¼ rin � n ¼ rex � n ¼ K0 � ½n� ð17Þ

together with constitutive laws (12)1, (12)2 and (12)3, see

Appendix. This solution for the displacement fields n
in

and n
ex

gives access to the traction forces at the

interfaces Tðr ¼ aÞ ¼ r � nðr ¼ aÞ ¼ K0 � ½n
ex
ðr ¼ aþÞ�

n
in
ðr ¼ a�Þ�. Their use for estimating the traction forces

at the interfaces within the polycrystalline RVE Vpoly yields

the corresponding ‘macroscopic’ stress Rpoly according to

(6) as

Rpoly ¼
1

VC

Z
oVC

an� ðr � nÞðr ¼ aÞdS ð18Þ

The solution for the displacements at r = a+ turns out to

be, according to (12)2 and (3), nðr ¼ aþÞ ¼ n
i
þ ½½n��=2; a

suitable estimate for the mean displacement �n at the crystal

interface I ij. Use of this quantity in (4) yields the corre-

sponding ‘macroscopic’ strains Epoly in the form

Epoly ¼
1

VC

Z
oVC

n
ex
ðaþÞ�

s
ndS ð19Þ

Shear components Rpoly;12 and Epoly;12 of ‘macroscopic’

stresses (18) and strains (19), together with (14)–(17) and

(50)–(54), give access to lpoly, via lpoly ¼ R12=ð2E12Þ,
yielding (after elimination of E0) the following expression,

lC

lpoly

¼ 1þ 3
5j
2
þ lC

8lpoly

þ 6kC þ 17lC

57kC þ 4lC

 !�1
2
4

3
5
�1

ð20Þ

with the dimensionless quantity j ¼ K 0t a=lC. j!1
relates to a rigid interface. The higher the rigidity j of

the interface, the higher the overall polycrystal shear

modulus (Fig. 4), for different (dimensionless)

compressibilities v ¼ lC=kC of the single crystals.

Thereby, crystal incompressibility (v! 0) guarantees

finite overall shear stiffness even for an interface with

vanishing stiffness (j ¼ 0), while a polycrystal built up of

crystals with zero bulk modulus (v!1) and connected

through zero-stiffness interfaces (j = 0) does not exhibit

0

0.2

0.4

0.6

0.8

1

2             4 6 8             10

Fig. 4 Homogenized shear modulus lpoly of polycrystal, as function

of dimensionless quantity j ¼ K 0t a=lC (interfacial rigidity), for

different crystal compressibilities v ¼ lC=kC , Eq. 20
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any shear stiffness (Fig. 4), but still the bulk stiffness of

the single crystals according to (13). In case of an

incompressible solid (kC !1; v ¼ lC=kC ! 0), it

follows from (13) that kpoly !1, and (20) reduces to

48ð5þ jÞ
lpoly

lC

� �2

þð�114þ 9jÞ
lpoly

lC

� 57j ¼ 0 ð21Þ

Upscaled failure properties of polycrystal with weak

interfaces

In order to determine the effective failure properties

resulting from local failure characteristics (8) and from the

interactions between interfaces and bulk single crystals, we

are left with relating the local interface forces TðxÞ 2 I to

the ‘macroscopic’ stresses Rpoly, see (5). The tangential and

normal traction forces, Tt and Tn, occuring in the interface

failure criterion (8), are non-homogeneously distributed

across the interfaces. Failure will occur where relatively

high tangential traction forces encounter a relative low

resistance due to relatively low normal traction forces.

Instead of trying to model the actual force fields across the

interfaces, we estimate the effect of the actual force dis-

tribution through so-called effective traction forces, as it is

commonly done for stress, strain, or force fields in the

context of continuum micromechanics [14, 47]. In this line,

we represent the failure-inducing interplay between mod-

erate normal traction forces and tangential traction force

peaks by means of two different effective measures for the

normal and the tangential traction forces, respectively: (i)

first-order moments of normal forces, and (ii) second-order

moments of tangential forces.

The first-order moment of the normal traction forces,

hTni, is related to the ‘macroscopic’ mean stress Rpoly;m

through

Rpoly;m ¼
1

3
trRpoly

¼ 1

3
tr

3

AC

Z
oVC

nðxÞ � ½rðxÞ � nðxÞ�dS

� �

¼ 1

AC

Z
oVC

rrrðxÞdS ¼ 1

AC

Z
oVC

TnðxÞdS

¼ hTni ð22Þ

(22) establishes a first link between the ‘macroscopic’

stress Rpoly and the interface tractions TðxÞ: We use this

average (or first-order moment) of normal traction forces as

to estimate the ‘average’ interface resistance Tcr
t in (8),

according to

Tcr
t 	 aðh� hTniÞ ð23Þ

However, use of the average tangential traction force hTti
in failure criterion (8) is problematic since force peaks ini-

tializing failure may be cancelled out in the averaging process.

As a remedy, we use the second-order moment
ffiffiffiffiffiffiffiffiffi
hT2

t i
p

(also

called quadratic average) as a characteristic or effective value

for TtðxÞ, in the line of [13, 14, 35]. The relation betweenffiffiffiffiffiffiffiffiffi
hT2

t i
p

and Rpoly is established through energy consider-

ations: The energy stored in the RVE Vpoly can be expressed

through the global ‘macroscopic’ energy density W as

VpolyW ¼
1

2
VpolyRpoly : Epoly

¼ 1

2
VpolyEpoly : Cpoly : Epoly

¼ Vpoly

1

2
kpolyE2

poly;v þ 2lpolyE2
poly;d

� �
ð24Þ

with ‘macroscopic’ volumetric strain Epoly;v ¼ tr Epoly

and equivalent deviatoric strain Epoly;d ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=2 Epoly;d : Epoly;d

p
;Epoly;d ¼ Epoly � 1=3Epoly;v1.

In order to express W from a microstructural viewpoint,

we consider the local constitutive behavior of the interface

(Eq. 9) and of the bulk phase (Eq. 10). The corresponding

‘macroscopic’ elastic energy stored in the RVE reads as

VpolyW ¼
1

2

Z
Vpoly

r : edV þ 1

2

Z
I

T � ½½n��dS

¼ 1

2

Z
Vpoly

e : CC : edV þ 1

2

Z
I
½½n�� � K � ½½n��dS ð25Þ

In order to extract hT2
t i ¼ 1

AC

R
I T2

t dS from (25), varia-

tions of W with varying Kt (holding merely Epoly fixed) are

studied,

Vpoly

oW
oKt
¼
Z

Vpoly

oe

oKt
:rdVþ

Z
I

o½½n��
oKt
�TdS

þ1

2

Z
I
½½n�� � ð1�n�nÞ � ½½n��dS¼

Z
Vpoly

oe

oKt
:rdV

þ
Z

Vpoly

o

oKt
ð½½n���ndI Þ :rdVþ1

2

Z
I
½½nt��2dS

ð26Þ

where T¼r �n was considered and where dI is the ‘Dirac

distribution’ of support I ;
R

V dI f dV¼
R
I f dS. For

transformation of (26), we extend Hill’s lemma [28] to

the case of displacement discontinuities at the interfaces

[14]. Considering (5) and the format (2) for the

‘macroscopic’ strains Epoly, (26) can be transformed to

Vpoly

oW
oKt
¼
Z

Vpoly

o

oKt
ðeþ ½½n�� � ndI Þ : rdV

þ 1

2

Z
I
½½nt��2dS ¼ oEpoly

oKt
: Rpoly þ

1

2

Z
I
½½nt��2dS ð27Þ
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Fixed ‘macroscopic’ strains Epoly according to (1) imply

oEpoly=oKt ¼ 0, so that (27) becomes

Vpoly

oW
oKt
¼ 1

2

Z
I
½½nt��2dS ¼ I

2
½½nt��2
D E

ð28Þ

Identification of (28) with the derivation of the ‘mac-

roscopic’ expression for the energy density (24) with

respect to Kt yields

I
Vpoly

½½nt��2
D E

¼ okpoly

oKt
E2

poly;v þ 4
olpoly

oKt
E2

poly;d ð29Þ

When considering hT2
t i ¼ K2

t ½½n
2
t ��

� �
according to (9),

okpoly=oKt ¼ 0 according to (13), and Rpoly;d ¼
2lpolyEpoly;d, (29) reduces to

I
Vpoly

hT2
t i ¼ �

o

oKt

1

lpoly

 !
K2

t R2
poly;d ð30Þ

where Rpoly;d is the equivalent deviatoric stress of the

‘macroscopic’ second-order stress tensor Rpoly,

Rpoly;d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
Rpoly;d : Rpoly;d

r

with Rpoly;d ¼ Rpoly � Rpoly;m1;

and Rpoly;m ¼
1

3
trRpoly

ð31Þ

Combination of (30) with I=Vpoly ¼ 3=ð2aÞ and with

j ¼ K 0t a=lC yields

ffiffiffiffiffiffiffiffiffi
hT2

t i
q

¼ BTt
Rpoly;d

with BTt
ðv ¼ lC

kC
; jÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 1

3
j2

o

oj
lC

lpoly

 !vuut ð32Þ

Remarkably, the second-order moment of tangential

tractions over all interfaces within the RVE,
ffiffiffiffiffiffiffiffiffi
hT2

t i
p

, is pro-

portional to the ‘macroscopic’ equivalent deviatoric stress

Rpoly;d, expressed by the proportionality factorBTt
. The more

compressible the solid crystal (the larger v ¼ lC=kC), the

higher the tangential traction peaks in the intercrystalline

interface, generated by an equivalent deviatoric ‘macro-

scopic’ stress Rpoly;d. However, the corresponding concen-

tration factor BTt
is bounded by

ffiffiffiffiffiffiffiffi
2=5

p
(Fig. 5),

lim
v!1
BTt
ðjÞ ¼

ffiffiffi
2

5

r
ð33Þ

On the other hand, for any constant crystal compress-

ibility v, stiffening the interface (enlarging j ¼ K 0t a=lC) also

increases the peaks of tangential traction force, i.e., the

proportionality factor BTt
, again bounded by

ffiffiffiffiffiffiffiffi
2=5

p
(Fig. 5),

lim
j!1
BTt
ðvÞ ¼

ffiffiffi
2

5

r
ð34Þ

Use of the micro traction-macro stress relationships (22)

and (32) in the local interface criterion (8) yields a ‘mac-

roscopic’ polycrystal-specific brittle-failure criterion in the

form

BTt
Rpoly;d � aðh� Rpoly;mÞ ð35Þ

(35) expresses that Coulomb-type brittle failure (8) in the

interfaces between spherical crystals inside the RVE results

in Drucker–Prager-type (brittle) failure properties at the

scale of the polycrystal.

Micromechanics of porous material with polycrystalline

skeleton

We consider an RVE VPORO (Figs. 2b, 9) of a porous

material (with porosity u) where the contiguous solid

phase [volume VS, VS ¼ VPOROð1� uÞ� is a polycrystal

with weak interfaces according to Section ‘‘Microme-

chanics of polycrystal with weak interfaces’’. The Mori–

Tanaka homogenization scheme has been proven as suit-

able tool to upscale the elastic properties of the solid phase

[kpoly and lpoly defined through (13), (20), (21)] to the

stiffness of such a porous material, see e.g. [9, 11],

CPORO ¼ ð1� uÞCpoly : ð1� uÞIþ uðI� SÞ�1
� ��1

ð36Þ

with the Eshelby tensor S for spherical inclusions reading

as [17]
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Fig. 5 Concentration factor BTt
relating ‘macroscopic’ deviatoric

stress on polycrystal to effective tangential traction in intercrystalline

interfaces, as function of dimensionless quantity j ¼ K 0t a=lC

(interfacial rigidity), for different crystal compressibilities

v ¼ lC=kC , Eq. 32
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S ¼ 3kpoly

3kpoly þ 4lpoly

Jþ
6ðkpoly þ 2lpolyÞ

5ð3kpoly þ 4lpolyÞ
K ð37Þ

so that

kPORO ¼
4kpolylpolyð1� uÞ
3kpolyuþ 4lpoly

ð38Þ

lPORO ¼ lpoly

ð1� uÞð9kpoly þ 8lpolyÞ
9kpolyð1þ 2

3
uÞ þ 8lpolyð1þ 3

2
uÞ

ð39Þ

We consider brittle failure of the overall porous medium

if the polycrystal failure criterion (35) is reached in highly

stressed regions of the polycrystalline matrix. The corre-

sponding (‘micro’-) heterogeneity within the solid matrix

has recently been shown [13] to be reasonably considerable

through so-called (homogeneous) effective (‘micro’-)

stresses, such as the square root of the spatial average over

the solid material phase, of the squares of equivalent

deviatoric (‘micro’-) stresses,

ffiffiffiffiffiffiffiffiffiffiffi
hr2

diS
q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

VS

Z
VS

1

2
rdðxÞ : rdðxÞdV

s
ð40Þ

with rdðxÞ ¼ rðxÞ � 1

3
trrðxÞ1 ð41Þ

The effective deviatoric stress (40), used to approximate

Rpoly;d in (35), is accessible through energy considerations

similar to those of (24) to (30), and result to be ([9, p. 132,

13])

R2
poly;d 	 hr2

diS ¼ � o

olpoly

ð 1

kPORO

ÞR2
PORO;m

"

� o

olpoly

ð 1

lPORO

ÞR2
PORO;d

#
l2

poly

ð1� uÞ ð42Þ

In analogy to (23), the effective mean stress level in the

solid matrix is chosen as the stress average over the solid

phase,

Rpoly;m 	 hrmiS ¼
1

VS

Z
VS

1

3
trrðxÞdV

¼ RPORO;m

1� u
ð43Þ

Use of Eqs. 43 and 42, together with (38)–(41), (13), and

(20), in (35) yields a failure criterion at the scale of the

porous material with polycrystalline interfaces in the solid

phase,

3u
4
� a
BTt

� �2
" #

R2
PORO;m

þ
2uð23� 50mpoly þ 35m2

polyÞ
ð�7þ 5mpolyÞ2

þ 1

" #
R2

PORO;d

þ 2
a
BTt

� �2

hð1� uÞRPORO;m

¼ a
BTt

� �2

h2ð1� uÞ2 ð44Þ

with mpoly ¼ mpolyðkpoly; lpolyÞ according to (15),

lpoly ¼ lpolyðkC; lC; jÞ according to (20), and

BTt
¼ BTt

ðv ¼ lC

kC
;jÞ according to (32).

The elastic stress domain of the porous medium the

matrix of which is a polycrystal with brittle interfaces in-

creases with decreasing crystal compressibility v (Fig. 6).

For the incompressible limit case, v! 0, (44) reduces to

3u
4
� a
BTt

� �2
" #

R2
PORO;m þ 1þ 2

3
u

� �
R2

PORO;d

þ 2
a
BTt

� �2

hð1� uÞRPORO;m

¼ a
BTt

� �2

h2ð1� uÞ2 ð45Þ

For a crystal compressibility of hydroxyapatite,

v 	 0:54 (see also Section ‘‘Application to hydroxyapatite

biomaterials‘‘), the elastic domain increases with decreas-

ing interfacial rigidity (Fig. 7) and with increasing friction

angle a (Fig. 8). High interfacial rigidities j or low friction

angles a result in closed elastic domains, indicating pos-

sible failure of the porous material even under hydrostatic

stress states R ¼ 1Rm, while low interfacial rigidities j or

high friction angles a are related to open elastic domains,

related to infinite resistance of the porous material, as long

−2 −1.5 −1 −0.5 0 0.5
0

0.1

0.2

0.3

0.4

0.5

Fig. 6 Elastic limits of a porous material the matrix of which is a

polycrystal with brittle interfaces, for different crystal compressibil-

ities v ¼ lC=kC (Eq. 44): u ¼ 0:5; a ¼ 0:3;j!1. Uniaxial load

path indicated (thin solid line)
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as the macroscopic stress state R contains a certain

hydrostatic amount (Figs. 7 and 8).

Application to hydroxyapatite biomaterials

Porous hydroxyapatite (HA) biomaterials are widely used

for replacement of hard tissue defects, because of their

chemical composition, microstructure and Young’s mod-

ulus being similar to the bone mineral, called carbonated or

calcium-deficient hydroxyapatite (CDHA) [26, 36, 46]. If

porous scaffolds are used as bone replacement material in

highly loaded anatomical locations, reliability of their

mechanical properties is particularly important for the

performance of the implants. Therefore, the prediction of

strength of HA biomaterials from their microstructure and

porosity is of particular interest. To the knowledge of the

authors, corresponding micromechanical approaches are

extremely rare or inexistent, so that we check in this

section, to which extent the model developed before can

serve the purpose of the aforementioned prediction.

Materials processing and uniaxial mechanical testing

We here consider the following artificially produced HA

materials: Peelen et al. [42] controlled the porosity of HA

by a variation of the sintering temperature (1,100–

1,400 �C, Table 2). Compacted commercially available

powders were used to produce HA with porosities between

36% and 70%. Cylindrical samples (diameter: 1 cm,

length: 1–1.5 cm) were tested in compression (Table 2).

Akao et al. [1] precipitated HA powder and sintered it at

different temperatures (1,150–1,300 �C). Porosities ranged

from 3% to 19% (Table 2). Compression tests were

performed on bars with dimensions of 5 · 5 · 10 cm3

(Table 2).

Martin and Brown [38] prepared calcium-deficient HA

formed in aqueous solutions at physiological temperatures.

The authors realized two different liquid-to-solid weight

ratios, resulting in porosities of 27% and 39%, respectively

(Table 2). Cylindrical samples with diameter of ~6 mm

were tested in compression (Table 2).

Micromechanical representation of hydroxyapatite

biomaterials

In the hierarchical organization of synthetic hydroxyapatite

ceramics, we identify two different scales which will be

considered in the framework of a two-step homogenization

scheme. The first homogenization step refers to an obser-

vation scale of several hundreds of microns where

hydroxyapatite crystals are separated by boundaries or

interfaces (Fig. 9a). The latter will be shown to be a po-

tential nucleus for failure of the material. The corre-

sponding homogenized material is called ‘hydroxyapatite

polycrystal with interfaces’. At the microstructural scale

with a characteristic length of some millimeters (Fig. 9b),

pores are embedded in a matrix which is made up of the

material which was homogenized in the first upscaling step.

Table 2 Experimental data: Compressive strength fc as function of

porosity u, for artificial hydroxyapatite produced through different

synthesis routes

Peelen et al. [42] Akao et al. [1] Martin and Brown [38]

u (%) fc (MPa) u (%) fc (MPa) u (%) fc (MPa)

36 160 2.8 509 27 172.5a

48 114 3.9 465 39 119a

60 69 9.1 415

65 45 19.4 308

70 30

a Mean value calculated from three experiments
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Fig. 7 Elastic limits of a porous material the matrix of which is a

polycrystal with brittle interfaces, for different dimensionless

quantities j ¼ K 0t a=lC (interfacial rigidity) (Eq. 44): u ¼ 0:5;
a ¼ 0:3; v ¼ 0:54. Uniaxial load path indicated (thin solid line)
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Fig. 8 Elastic limits of a porous material the matrix of which is a

polycrystal with brittle interfaces, for different friction angles a (Eq.

44): u ¼ 0:5; j!1; v ¼ 0:54. Uniaxial load path indicated (thin

solid line)
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Elastic properties of single crystals of hydroxyapatite

An ultrasonic interferometer technique delivers typical

values for bulk and shear moduli, kC ¼ kHA ¼ 82:6 GPa

and lC ¼ lHA ¼ 44:9 GPa [34].

Biomaterial-independent properties of interfaces

between hydroxyapatite crystals, a; h; j—back-analysis

The expression for macroscopic admissible stress states

(44) contains three material properties which are difficult to

be directly accessed, namely the friction angle a, the

cohesion h, and the rigidity j of the interfaces. Therefore,

these phase properties will be determined by means of an

optimization procedure providing the closest match of

model predictions to experimentally determined uniaxial

compressive strength data of hydroxyapatite biomaterials,

given in Table 2 [1, 38, 42].

The sum of squares of relative errors between predicted

strength and experimental strength values is minimized,

Gða; h; jÞ ¼
X

i

f pred
c;i � f exp

c;i

f exp
c;i

 !2

! 0

) aopt; hopt; jopt

ð46Þ

where f pred
c;i denotes predicted uniaxial compressive strength

values obtained from Eq. 44 with RPORO;m ¼ �f pred
c;i =3,

RPORO;d ¼ f
pred
c;i =

ffiffiffi
3
p

, together with Eqs. 13, 20, and 32, for

porosity values ui according to Table 2. f exp
c;i is the corre-

sponding ith experimental strength value, see Table 2.

We use the ‘two-membered evolution strategy’ [24, 45],

closely related to the ideas of Darwin’s evolution theory.

The components of a three-dimensional vector of estima-

tions for a, h and j; ða; h; jÞparent; representing the ‘parent’,

are slightly varied by help of a random number generator

(representing ‘mutations’), resulting in a vector

ða; h; jÞchild, representing the ‘child’,

ða; h; jÞchild ¼ ða; h; jÞparent

þ ðN raparent;N rhparent;N rjparentÞ ð47Þ

N denotes a number produced by a standardized normally

distributed random number generator standardly available

in MATLAB [31]. r stands for a scattering factor which

will be dealt with later on.

If the child fits better in its ‘environment’ than the

parent, i.e., if

G½ða; h; jÞchild�\G½ða; h; jÞparent� ð48Þ

see (46), vector ða; h; jÞchild will be further varied, i.e., it

then becomes the parent for the next generation. If not, the

original parent undergoes new mutations.

Based on the number of ‘successes’ of the evolution,

i.e., the number of cases for which Eq. 48 holds, the

scattering factor r is changed: If the total number of suc-

cesses within the last 10 mutations exceeds a certain

threshold (typically 4), r is enlarged, otherwise it is

reduced.

If the difference between G½ða; h; jÞparent� and

G½ða; h; jÞchild� lies within a prescribed tolerance over a

certain number of mutations, the optimum ðaopt; hopt;

joptÞ 	 ða; h; jÞparent 	 ða; h; jÞchild has been reached.

Applying this procedure, (46)–(48), to (44) and using

the experimental data from Table 2 yields, depending on

the start values of the optimization procedure, a set of

solution vectors ðaopt; hopt; joptÞ which are equal in terms of

the highly satisfactory correlation coefficient ðr2 ¼ 0:97Þ
between the respective model predictions and the corre-

sponding experimental data for uniaxial compressive

strength (see Fig. 10). To give an example, ðaopt; hopt;

joptÞ ¼ ð0:6750; 17:2397; 0:9119Þ and (0.9345, 17.7664,

6.4160) (h has the dimension (MPa)) are two of these

solution vectors. For all calculated ‘optimal’ solution

vectors, we find a constant ratio a0 ¼ a=BTt
¼ 1:61 (see

Eqs. 20 and 32), implying a relationship between a and j,

depicted in Fig. 11.

Clearly, it would be interesting to cross-check these

interface failure parameters derived from our ‘inverse

method’ with other direct tests. Deplorably, an extensive

literature check could not provide any direct in situ mea-

surements of stresses and failure mechanisms at the inter-

face ‘micro’ level. The only additional experimental

inter-crystallinehydroxyapatite
interfacescrystals

(b) porous material with polycrystalline solid matrix

(a) Hydroxyapatite polycrystal with weak interfaces

microporespolycrystal (matrix)

Fig. 9 Micromechanical representation of a porous hydroxyapatite

polycrystal by means of a two-step homogenization procedure. (a)

Hydroxyapatite polycrystal with weak interfaces and (b) porus

material with polycrystalline solid matrix
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evidence are scanning electron micrographs (Fig. 2 in Ref.

[8], Figs. 5–7 in Ref. [38]): These images, however, clearly

show sharp, rough failure surfaces, coinciding with the

boundaries of single, micrometer-sized grains. This, to-

gether with the sharp stress drops in corresponding

(‘macroscopic’) stress–strain diagrams indicating brittle

overall failure, strongly suggests brittle failure of the

crystal interfaces, as we have modeled herein.

Brittle versus ductile failure of solid matrix in porous

medium

From a purely mathematical standpoint, it is interesting to

compare the elastic domain (44) to the yield surface of a

porous medium, related to failure of a ductile (not a brittle)

solid matrix obeying Drucker–Prager criterion (35). This

yield surface can be obtained through non-linear homoge-

nization based on effective quantities (42) and (43), as

detailed in [9, 11],

ð3u
4
� a02ÞR2

PORO;m þ ð1þ
2

3
uÞR2

PORO;d

þ 2a02hð1� uÞRPORO;m ¼ a02h2ð1� uÞ2 ð49Þ

with a0 ¼ a=BTt
ðjÞ and h as only two parameters being left

for an optimization procedure to match the experimental

data of Fig. 10 and Table 2. This procedure delivers a

cohesion hopt ¼ 16:51 MPa (close to the values obtained for

the brittle case in Section ‘‘Biomaterial-independent prop-

erties of interfaces between hydroxyapatite crystals,

a; h; j—back-analysis‘‘) and ratio a0opt ¼ 1:61 which is

quasi-identical to the one obtained for the brittle case

(Section ‘‘Biomaterial-independent properties of interfaces

between hydroxyapatite crystals, a; h; j—back-analysis‘‘),

implying an a–j-relationship quasi-identical to that of

Fig. 11. This means that the failure of porous hydroxyapa-

tite biomaterials can be equally well represented by a brittle

elastic-limit-type micromechanics model and a ductile one

related to limit analysis. In this context, it is very interesting

to note that the ductile criterion (49) is even identical to the

elastic domain for incompressible solid matrices, Eq. 45.

Accordingly, one might argue that the nature of the

heterogeneity of the stresses in the solid matrix (considered

herein by quadratic averages) is far more important for the

overall failure of the material than the precise mode of

local interface failure (brittle or ductile). However, as re-

gards hydroxyapatite biomaterials, experiments [7, 38, 43]

strongly support brittle failure: A comprehensive mechan-

ical formulation for its possible origin, namely breaking of

weak interfaces between hydroxyapatite crystals, was the

main focus of the present paper.

Appendix

Solution of matrix-inclusion problem with compliant

interface (‘generalized Eshelby problem’, Fig. 3)

Solution of Eqs. 12–14, and 16 for the constants

Bex;Cex;Ain, and Bin yields them as:

Bex ¼ �a5ð176l3
polyl

2
C þ 24l2

polyl
3
C

� 12l3
CakpolyKt � 171l2

CakpolyKtkC þ 240l3
polykClC

þ 136l3
polylCaKt þ 48l3

polyaKtkC � 132al2
polyKtl

2
C

þ 528l2
polykpolyl

2
C þ 9al2

polyKtkClC

þ 720l2
polykpolykClC þ 342l2

polyl
2
CkC

þ 144l2
polyakpolyKtkC þ 408l2

polyakpolyKtlC

þ 27aKtkCkpolylpolylC � 396aKtl
2
Ckpolylpoly

� 57lpolyl
2
CaKtkC � 4lpolyl

3
CaKtÞ=N ð50Þ
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micromechanical model

Fig. 10 Uniaxial compressive strength fc of porous hydroxyapatite

biomaterial as function of porosity u: model prediction according to

Eq. 44 or Eq. 49, evaluated with RPORO;m ¼ �fc=3;RPORO;d ¼ fc=
ffiffiffi
3
p

,

compared to experimental data (Table 2). Correlation coefficient

r2 = 0.97
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Fig. 11 Friction angle–interface rigidity relationship a(j) suitable for

representation of strength of hydroxyapatite biomaterials (Fig. 10)
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Cex ¼ 5a3ð48l2
polyaKtkC þ 240l2

polykClC

þ 136l2
polyaKtlC þ 176l2

polyl
2
C � 8lpolyl

3
C

þ 9lpolyaKtkClC � 114lpolyl
2
CkC � 132lpolyaKtl

2
C

� 57l2
CaKtkC � 4l3

CaKtÞlpoly=N ð51Þ

Ain ¼ 5ð544l2
polyaKtlC þ 192l2

polyaKtkC þ 320l2
polyl

2
C

þ 1536l2
polykClC þ 16lpolyaKtl

2
C þ 228lpolyaKtkClC

þ 408akpolylpolyKtlC þ 144akpolylpolyKtkC

þ 240kpolylpolyl
2
C þ 1152kpolylpolykClC

þ 12aKtl
2
Ckpoly þ 171aKtkCkpolylCÞlpoly=N ð52Þ

Bin ¼ 240l2
polylCð8lpolylC þ 6kpolylC

� 12lpolykC � 9kpolykCÞ=ða2NÞ ð53Þ

N ¼ 1408l3
polyl

2
C þ 192l2

polyl
3
C þ 24l3

CakpolyKt

þ 342l2
CakpolyKtkC þ 1920l3

polykClC

þ 1088l3
polylCaKt þ 384l3

polyaKtkC

þ 1664al2
polyKtl

2
C þ 1584l2

polykpolyl
2
C

þ 1032al2
polyKtkClC þ 2160l2

polykpolykClC

þ 2736l2
polyl

2
CkC þ 432l2

polyakpolyKtkC

þ 1224l2
polyakpolyKtlC þ 801aKtkCkpolylpolylC

þ 852aKtl
2
Ckpolylpoly þ 1710lpolyl

2
CkpolykC

þ 120lpolyl
3
Ckpoly þ 684lpolyl

2
CaKtkC

þ 48lpolyl
3
CaKt ð54Þ

They define the displacement fields (14) and (16), which

give access to strains e ¼ Osn, stresses R (via (12)1, and

(12)3 respectively), mean interface displacements �n and

interface tractions t (via (12)2).
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